

Mapping global in situ data set : understanding uncertainties on global ocean state estimates

Nicolas Kolodziejczyk (UBO/LOPS/SNO Argo France) collab :William Llovel (CNRS/LOPS), Annaig Prijent (Ifremer/LOPS), Thierry Penduff (CNRS/IGE),Jean-Marc Molines (CNRS/IGE)

The international OneArgo Program

10 days

profiling depth

- International coordinated effort
- >3900 autonomous floats :T/S over 2000 m depth, 3°x3°x10 days
- Since 2019, OneArgo : Deep Argo (>2000 m depth) and BGC Argo (6 new BGC parameters) missions
- Provide data for:
 - → Operational oceanography
 - → Climate and oceanography sciences

Argo France

https://www.argo-france.fr/

- IR*/ERIC EuroArgo
- 10 % global contribution, 30 % European contribution
- Operate a Global Data Center

Argo France activities:

- Technology development (floats, sensor, ...)
- At sea operation (procurement, deployement, ...)
- Data management (DAC, GDAC, DMQC, ...)
- Scientific steering, activities, SNO Argo France (publication, community animation, ...)
 - → High level data products

Mapping in situ data for monitoring climate indices

- Ocean plays a key role in climate system (e.g. ~93% of global heat excess since 70's)
- In situ Global Ocean Observing System dedicated to collect sustain timeseries over the water column
- Since 2000's, Argo allows to monitor global to regional ocean variability including Heat, Freshwater, i.e. Steric sea level budget
- Pending uncertainties on global and regional budget (e.g. to close EEI, SL budget)

G-OHC/SL trends source of uncertainties?

- 1) Sampling
- 2) Data quality
- 3)OI 'a priori' statistics sensitivity
- 4) Impact 'Intrinsic' (eddies) variability of the ocean

Method: ISAS tool and configuration

- Optimal Interpolation (Bretherton, 1976)
 - → Global T/S field (0-2000 m)
 - \rightarrow 2002-2020
 - → Résolution : 0.5° Mercator, 187 z-levels (→ 5500 m depth)
- In situ data
 - → Argo (ISAS20 Argo only), Marine Mammals (MEMO), TAO-TRITON-PIRATA-RAMA Mooring, ITP, CTD
- A priori statistics and covariance scale and weight

$$C(dx, dy, dt) = \sum_{i=1}^{2} \sigma_{Li}^{2} \exp\left(\frac{dx^{2}}{2L_{xi}^{2}} + \frac{dy^{2}}{2L_{yi}^{2}} + \frac{dt^{2}}{2L_{ti}^{2}}\right), \tag{4}$$

T=45 days, L_1 = 300 km, L_2 = 4*Rossby radius Equatorial cov X scale < 600km f/h along bathymetry

$$\sigma^2 = \sigma_{L1}^2 + \sigma_{L2}^2 + \sigma_{UR}^2 + \sigma_{ME}^2, \tag{6}$$

 $W_1 = 1$; $W_2 = 2$; $W_{ur} = 8$; ME negligible

Method: Synthetic and ensemble approach

- How to get a « Truth » to assess error with method?
- Using global NEMO ORCA 0.25 + synthetic EN4 profiles data set (OCCIPUT, Penduff et al, 2014; Bessières et al.2017)
- Producing 50 member with same forcing and small perturbation in 1959 (only chaos will change among the members)
- Interpolation of 50 using ISAS tools over the Argo period (2005-2015, ISAS15 config.)
 - → See William Llovel's presentation for further explanations (next session)

(Llovel, Kolodziejczyk et al.,2022)

1) Analysis (mostly sampling) error and propagation

Analysis equation :

$$\mathbf{d} = \mathbf{y}^{\mathbf{o}} - \mathbf{y}^{\mathbf{f}},\tag{1}$$

$$\mathbf{x}^{\mathbf{a}} = \mathbf{x}^{\mathbf{f}} + \mathbf{K}^{\mathbf{OI}}\mathbf{d}, \tag{2}$$

$$\mathbf{P}^{\mathbf{a}} = \mathbf{P} - \mathbf{K}^{\mathbf{OI}} \mathbf{C}_{\mathbf{ao}}^{\mathbf{T}}, \tag{3}$$

$$\mathbf{K}^{\mathrm{OI}} = \mathbf{C}_{aa}(\mathbf{C}_{aa} + \mathbf{R})^{-1}.\tag{4}$$

(Gaillard et al., 2016)

 Error propagation in heat budget taking account of vertical and horizontal correlation :

$$\sigma_f^2 = \sum_{i}^{n} a_i^2 \sigma_i^2 + \sum_{i}^{n} \sum_{j(j \neq i)}^{n} a_i a_j \rho_{ij} \sigma_i \sigma_j$$

ρ is the vertical/horizontal correlation

2) Error due to data quality: example of salinity drift on SBE conductivity cells

- Conductivity measurements drift (Bio-fooling, clogging, ...)
- Ad hoc post calibration are used (OWC method)
- Abnormal, fast and more often drifts are observed since 2015
- Error larger than 0.01 PSS-78 for RT (~25% fleet, Wong et al., 2020)
- This salinity drift have been treated in DMQC, but data in RT in analysis could impact global budget (→ see *Barnoud et al., 2021*)

Doi: 2016/02

Doi: 2019/01

Doi: 2021/01

3) Sensitivity to a priori statistics

 Using synthetic data changing covariance weights and scales

$$C(dx, dy, dt) = \sum_{i=1}^{2} \sigma_{Li}^{2} \exp\left(\frac{dx^{2}}{2L_{xi}^{2}} + \frac{dy^{2}}{2L_{yi}^{2}} + \frac{dt^{2}}{2L_{ti}^{2}}\right), \tag{4}$$

T=45 days, L_1 = 300 km, L_2 = 4*Rossby radius Equatorial cov X scale < 600km f/h along bathymetry

$$\sigma^2 = \sigma_{L1}^2 + \sigma_{L2}^2 + \sigma_{UR}^2 + \sigma_{ME}^2, \tag{6}$$

 $w_1 = 1$; $w_2 = 2$; $w_{ur} = 8$; ME negligible

4) Impact of 'intrinsic' variability on GOHC and GTSL

- OHC/TSL trends differ due intrinsic variability
- ISAS/OCCIPUT trends differ due to OI tuning
- ISAS TSL is closer to OCCIPUT TSL trend due also to OI tuning
 - → See William Llovel's presentation for further analysis (next session)

Conclusion and perspectives

- Compute global budget from in situ measurements necessitate analysis tools with a priori hypothesis and caveats
- Source of error are identified : method, data quality, a priori statistics, intrinsic variability ...
- Synthetic approach helps to better constrain analysis parameters and consistency among TSL/OHC global budget

Extra-slides