

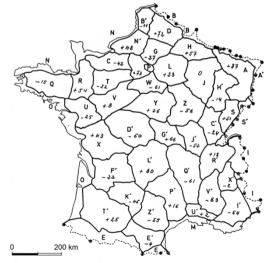
NIREF

NIVELLEMENT DE RÉFÉRENCE

LE RÉSEAU FRANÇAIS DE NIVELLEMENT TRÈS HAUTE PRÉCISION

SYSTÈME DE RÉFÉRENCE VERTICAL OFFICIEL : IGN69

- Environ 330 000 repères en état
- Subdivisé en 4 réseaux de plus en plus denses
- Observations dans les années 60


Le réseau « de 1er ordre » constitue la participation de la France au Réseau européen unifié de

nivellement (UELN)

Deux exemples de repères de nivellement

Le réseau de 1^{er} ordre d'IGN69

INCONVÉNIENTS DE IGN69

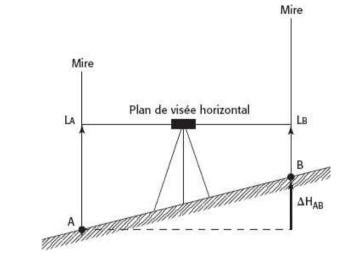
- Précision faible
 - Ecart-type des mesures du réseau de 1^{er} ordre presque 2x supérieur à celui de l'ensemble du réseau UELN
- Biais Nord-Sud
 - Altitudes « trop hautes » vers le Nord
 - Détection en 1970 par comparaison à des données marégraphiques
 - Confirmation en 1983 par la réalisation d'une traverse précise Marseille-Dunkerque
 - Ce biais Nord-Sud est attesté dans d'autres réseaux de par le monde
 - L'origine est toujours inconnue : une erreur systématique ?

AVANTAGES DE IGN69

- Couverture très dense du territoire
- Forte utilisation

CRÉATION DE NIREF

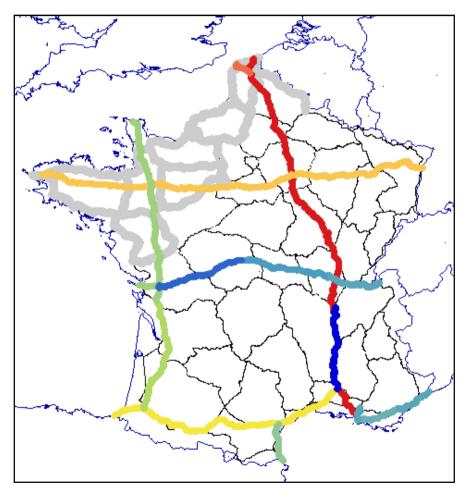
- Lancement en 1996, sur la base de la traverse de 1983
- « NIREF » pour « Nivellement de Référence »
- Techniques modernes et spécifications strictes pour obtenir un réseau de très haute précision
- Objectifs:
 - Estimer le biais Nord-Sud de IGN69 de manière globale
 - Comparer le réseau aux données marégraphiques
 - Servir à la recherche sur les réseaux de référence verticaux
 - Permettre la livraison d'un nouveau jeu de données à UELN
- N'est pas destiné à remplacer IGN69 comme système légal


02. RÉALISATION

02. RÉALISATION

TECHNIQUES

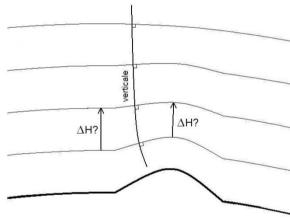
- « NIGEMO » : Nivellement géométrique motorisé
 - Technique moins sujette aux erreurs de réfraction
 - Permet de couvrir de longues distances plus rapidement
- Spécifications strictes :
 - Portées de 50 mètres maximum
 - Mesures sur deux échelles
 - Observations en aller/retour
 - Tolérances entre aller et retour :
 - < 0.3 mm</p>
 - $87\% < 0.83 \text{ mm/km}^{1/2}$
- Pas de relief accidenté, car pas de mesures de gravimétrie



02. RÉALISATION

NIREF EN 2013

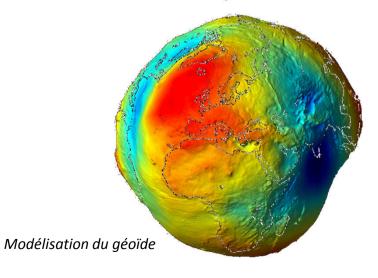
- Traverse Marseille-Dunkerque (1983)
- Jonction avec le Tunnel sous la Manche (1994)
- Traverses Nord et Sud (2001-2002)
- Traverse Ouest et jonction Espagne (2004-2006)
- Traverse Centre et jonction Italie (2008-2011)
- Reprise de Marseille-Dunkerque (2012-...)
- Ré-observations de 1er ordre (1992-1999)



L'ALTITUDE IDÉALE

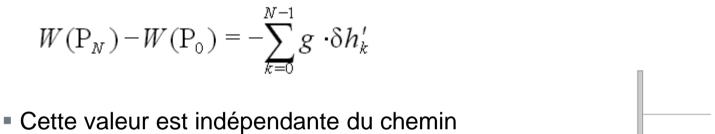
- L'altitude est « une hauteur au-dessus de la mer »
- Elle doit être constante sur une surface « horizontale »
- L'eau doit couler « vers le bas »

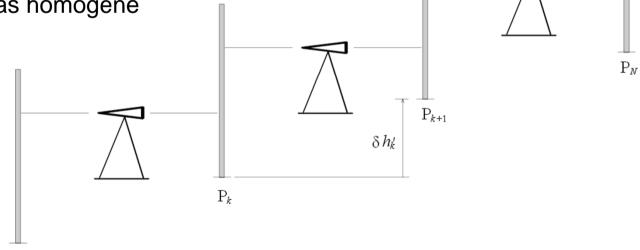
MAIS:


- Les « verticales » ne sont pas droites
- Donc les surfaces « horizontales » ne sont pas parallèles
- Donc les altitudes ne peuvent pas être des hauteurs géométriques

L'ALTITUDE : QUELQUES DÉFINITIONS

- L'accélération de la pesanteur est un gradient, la dérivée d'une grandeur :
 le « potentiel gravitationnel »
- Une surface en tout point perpendiculaire au vecteur d'accélération : une « équipotentielle »
- L'équipotentielle qui correspond le mieux au niveau moyen des mers :


le « géoïde »

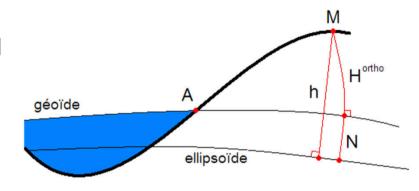


L'ALTITUDE : QUELQUES DÉFINITIONS

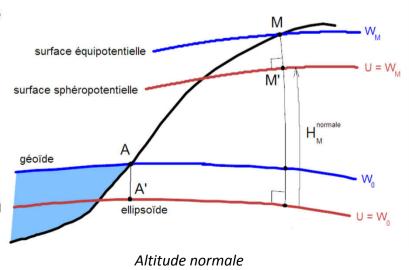
 Un nivellement géométrique associé à des mesures de gravimétrie permet de calculer la « différence de potentiel » entre deux points P_N et P₀ :

Cette valeur est indépendante du chemir suivi, mais n'est pas homogène à une distance

Une opération de nivellement géométrique



LES ALTITUDES


- Pour transformer une différence de potentiel en altitude, il faut la diviser par une accélération
- L'altitude orthométrique
 - Utilise une « valeur moyenne de g » le long de la « verticale »
 - Mais on ne peut pas mesurer g à l'intérieur de la Terre, on doit donc faire des hypothèses

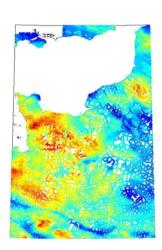
L'altitude normale

- Se base sur un « champ de pesanteur normal », modélisation du champ où les équipotentielles sont des ellipsoïdes
- Utilise une « valeur moyenne de l'accélération normale » le long de la verticale du champ « normal »

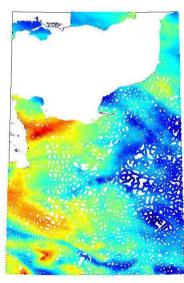
Altitude orthométrique

DONNÉES ISSUES DU TERRAIN

- Liste des points
 - Identifiant unique
 - Coordonnées géographiques
- Liste des travées
 - Identifiants des points avant et arrière
 - Dénivelée mesurée
 - Longueur de la travée
 - Écart-type


DONNÉES MANQUANTES

Gravimétrie sur les points


INTERPOLATION DE LA PESANTEUR

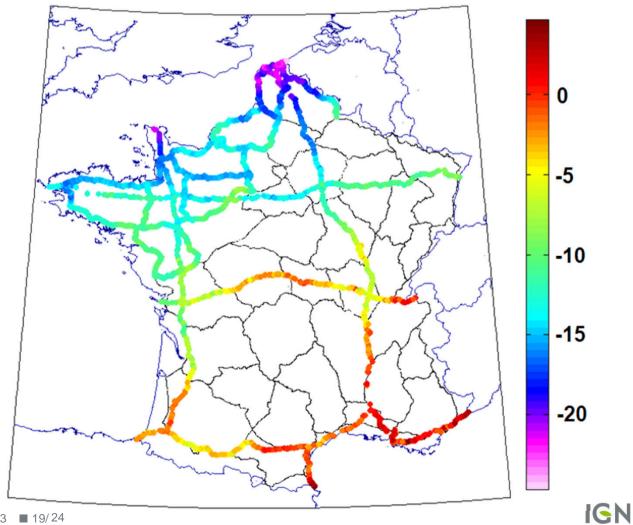
- Données en entrée :
 - Points du réseau NIREF
 - Couverture gravimétrique
 - Environ 500 000 anomalies à l'air libre
 - Modèle numérique de terrain
- Interpolation : « retrait-restauration »
 - Calcul des corrections de Bouguer
 - Effets du relief sur la pesanteur
 - Application des corrections aux données gravimétriques
 - Anomalies de Bouguer, plus lisses que les anomalies à l'air libre
 - Interpolation sur les points NIREF
 - Anomalies de Bouguer sur les points NIREF
 - Application des corrections en sens inverse
 - Anomalies à l'air libre sur le réseau NIREF

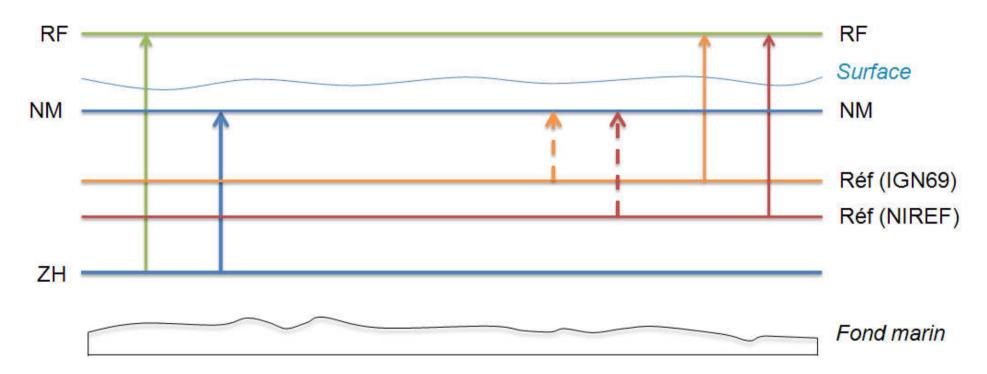
Anomalies à l'air libre

Modèle numérique de terrain

Anomalies de Bouquer

CALCUL DES ALTITUDES

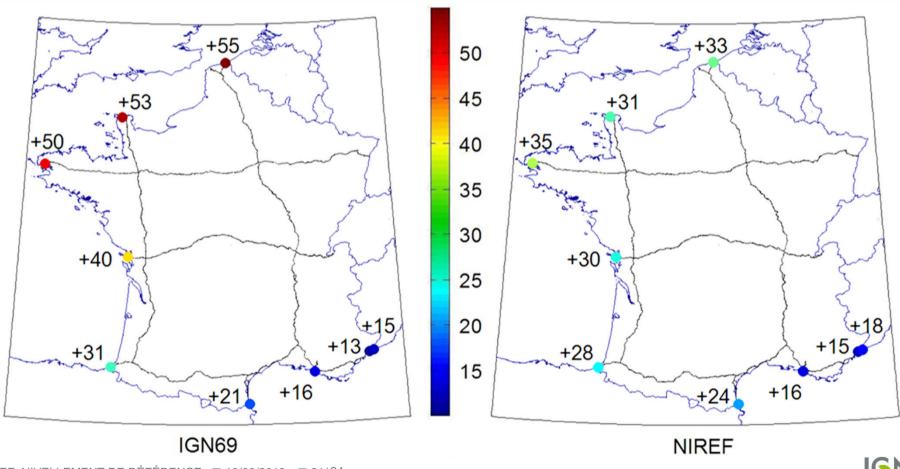

- Calcul des différences de potentiel :
 - A partir des dénivelés des travées et de la gravimétrie sur les points
- Compensation des différences de potentiel :
 - Ajustement par moindres carrés
- Calcul des cotes géopotentielles :
 - À partir d'une valeur conventionnelle au point d'origine et des différences de potentiel ajustées
- Transformation des cotes géopotentielles en altitudes normales :
 - Grâce à un ellipsoïde de référence et une formule de calcul du champ normal


COMPARAISON AVEC IGN69

- Biais Nord-Sud
 - 24 cm au Nord
 - + 4 cm au Sud

COMPARAISON AVEC LES MARÉGRAPHES

Références verticales différentes



Sources : Références Altimétriques Maritimes 2012, SHOM

COMPARAISON AVEC LES MARÉGRAPHES

Niveaux moyens des mers

06. PERSPECTIVES

06. PERSPECTIVES

REPRISE DE MARSEILLE-DUNKERQUE

Analyse des variations éventuelles

NOUVELLE PARTICIPATION À UELN

• NIREF avec premier ordre « corrigé » ?

IGN69

Grille de transformation NIREF-IGN69 ?

FIN. MERCI DE VOTRE ATTENTION

